Diffusion Models already have a Semantic Latent Space
Authors: Mingi Kwon, Jaeseok Jeong, Youngjung Uh
Abstract: Diffusion models achieve outstanding generative performance in various domains. Despite their great success, they lack semantic latent space which is essential for controlling the generative process. To address the problem, we propose asymmetric reverse process (Asyrp) which discovers the semantic latent space in frozen pretrained diffusion models. Our semantic latent space, named h-space, has nice properties for accommodating semantic image manipulation: homogeneity, linearity, robustness, and consistency across timesteps. In addition, we introduce a principled design of the generative process for versatile editing and quality boost ing by quantifiable measures: editing strength of an interval and quality deficiency at a timestep. Our method is applicable to various architectures (DDPM++, iD- DPM, and ADM) and datasets (CelebA-HQ, AFHQ-dog, LSUN-church, LSUN- bedroom, and METFACES). Project page: https://kwonminki.github.io/Asyrp/
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.