Xtreme Margin: A Tunable Loss Function for Binary Classification Problems

Authors: Rayan Wali

10 pages
License: CC BY 4.0

Abstract: Loss functions drive the optimization of machine learning algorithms. The choice of a loss function can have a significant impact on the training of a model, and how the model learns the data. Binary classification is one of the major pillars of machine learning problems, used in medical imaging to failure detection applications. The most commonly used surrogate loss functions for binary classification include the binary cross-entropy and the hinge loss functions, which form the focus of our study. In this paper, we provide an overview of a novel loss function, the Xtreme Margin loss function. Unlike the binary cross-entropy and the hinge loss functions, this loss function provides researchers and practitioners flexibility with their training process, from maximizing precision and AUC score to maximizing conditional accuracy for a particular class, through tunable hyperparameters $\lambda_1$ and $\lambda_2$, i.e., changing their values will alter the training of a model.

Submitted to arXiv on 31 Oct. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.