Polarization Entanglement from Parametric Down-Conversion with a LED Pump

Authors: Wuhong Zhang, Diefei Xu, Lixiang Chen

arXiv: 2211.00841v1 - DOI (quant-ph)
License: CC BY 4.0

Abstract: Spontaneous parametric down-conversion (SPDC) is a reliable platform for entanglement generation. Routinely, a coherent laser beam is an essential prerequisite for pumping the nonlinear crystal. Here we break this barrier to generate polarization entangled photon pairs by using a commercial light-emitting diode (LED) source to serve as the pump beam. This effect is counterintuitive, as the LED source is of extremely low spatial coherence, which is transferred during the down-conversion process to the biphoton wavefunction. However, the type-II phase-matching condition naturally filters the specific frequency and wavelength of LED light exclusively to participate in SPDC such that localized polarization Bell states can be generated, regardless of the global incoherence over the full transverse plane. In our experiment, we characterize the degree of LED light-induced polarization entanglement in the standard framework of the violation of Bell inequality. We have achieved the Bell value $S=2.33\pm 0.097$, obviously surpassing the classical bound $S=2$ and thus witnessing the quantum entanglement. Our work can be extended to prepare polarization entanglement by using other natural light sources, such as sunlight and bio-light, which holds promise for electricity-free quantum communications in outer space.

Submitted to arXiv on 02 Nov. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.