Toward Unsupervised Outlier Model Selection
Authors: Yue Zhao, Sean Zhang, Leman Akoglu
Abstract: Today there exists no shortage of outlier detection algorithms in the literature, yet the complementary and critical problem of unsupervised outlier model selection (UOMS) is vastly understudied. In this work we propose ELECT, a new approach to select an effective candidate model, i.e. an outlier detection algorithm and its hyperparameter(s), to employ on a new dataset without any labels. At its core, ELECT is based on meta-learning; transferring prior knowledge (e.g. model performance) on historical datasets that are similar to the new one to facilitate UOMS. Uniquely, it employs a dataset similarity measure that is performance-based, which is more direct and goal-driven than other measures used in the past. ELECT adaptively searches for similar historical datasets, as such, it can serve an output on-demand, being able to accommodate varying time budgets. Extensive experiments show that ELECT significantly outperforms a wide range of basic UOMS baselines, including no model selection (always using the same popular model such as iForest) as well as more recent selection strategies based on meta-features.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.