New Generation Stellar Spectral Libraries in the Optical and Near-Infrared I: The Recalibrated UVES-POP Library for Stellar Population Synthesis

Authors: Sviatoslav Borisov, Igor Chilingarian, Evgenii Rubtsov, Cédric Ledoux, Claudio Melo, Kirill Grishin, Ivan Katkov, Vladimir Goradzhanov, Anton Afanasiev, Anastasia Kasparova, Anna Saburova

arXiv: 2211.09130v1 - DOI (astro-ph.IM)
26 pages, 23 figures, submitted to ApJS
License: CC BY 4.0

Abstract: We present re-processed flux calibrated spectra of 406 stars from the UVES-POP stellar library in the wavelength range 320-1025 nm, which can be used for stellar population synthesis. The spectra are provided in the two versions having spectral resolving power R=20,000 and R=80,000. Raw spectra from the ESO data archive were re-reduced using the latest version of the UVES data reduction pipeline with some additional algorithms that we developed. The most significant improvements in comparison with the original UVES-POP release are: (i) an updated Echelle order merging, which eliminates "ripples" present in the published spectra, (ii) a full telluric correction, (iii) merging of non-overlapping UVES spectral setups taking into account the global continuum shape, (iv) a spectrophotometric correction and absolute flux calibration, and (v) estimates of the interstellar extinction. For 364 stars from our sample, we computed atmospheric parameters $T_\mathrm{eff}$, surface gravity log $g$, metallicity [Fe/H], and $\alpha$-element enhancement [$\alpha$/Fe] by using a full spectrum fitting technique based on a grid of synthetic stellar atmospheres and a novel minimization algorithm. We also provide projected rotational velocity $v\sin i$ and radial velocity $v_{rad}$ estimates. The overall absolute flux uncertainty in the re-processed dataset is better than 2% with sub-% accuracy for about half of the stars. A comparison of the recalibrated UVES-POP spectra with other spectral libraries shows a very good agreement in flux; at the same time, $Gaia$ DR3 BP/RP spectra are often discrepant with our data, which we attribute to spectrophotometric calibration issues in $Gaia$ DR3.

Submitted to arXiv on 16 Nov. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.