Energy transfer and restructuring in amorphous solid water upon consecutive irradiation

Authors: Herma M. Cuppen, Jennifer A. Noble, Stephane Coussan, Britta Redlich, Sergio Ioppolo

arXiv: 2211.16217v1 - DOI (astro-ph.GA)
34 page, 9 figures
License: CC BY 4.0

Abstract: Interstellar and cometary ices play an important role in the formation of planetary systems around young stars. Their main constituent is amorphous solid water (ASW). Although ASW is widely studied, vibrational energy dissipation and structural changes due to vibrational excitation are less well understood. The hydrogen-bonding network is likely a crucial component in this. Here we present experimental results on hydrogen-bonding changes in ASW induced by the intense, nearly monochromatic mid-IR free-electron laser (FEL) radiation of the FELIX-2 beamline at the HFML-FELIX facility at the Radboud University in Nijmegen, the Netherlands. Structural changes in ASW are monitored by reflection-absorption infrared spectroscopy and depend on the irradiation history of the ice. The experiments show that FEL irradiation can induce changes in the local neighborhood of the excited molecules due to energy transfer. Molecular Dynamics simulations confirm this picture: vibrationally excited molecules can reorient for a more optimal tetrahedral surrounding without breaking existing hydrogen bonds. The vibrational energy can transfer through the hydrogen-bonding network to water molecules that have the same vibrational frequency. We hence expect a reduced energy dissipation in amorphous material with respect to crystalline material due to the inhomogeneity in vibrational frequencies as well as the presence of specific hydrogen-bonding defect sites which can also hamper the energy transfer.

Submitted to arXiv on 29 Nov. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.