MINDS. The detection of $^{13}$CO$_{2}$ with JWST-MIRI indicates abundant CO$_{2}$ in a protoplanetary disk

Authors: Sierra L. Grant, Ewine F. van Dishoeck, Benoît Tabone, Danny Gasman, Thomas Henning, Inga Kamp, Manuel Güdel, Pierre-Olivier Lagage, Giulio Bettoni, Giulia Perotti, Valentin Christiaens, Matthias Samland, Aditya M. Arabhavi, Ioannis Argyriou, Alain Abergel, Olivier Absil, David Barrado, Anthony Boccaletti, Jeroen Bouwman, Alessio Caratti o Garatti, Vincent Geers, Adrian M. Glauser, Rodrigo Guadarrama, Hyerin Jang, Jayatee Kanwar, Fred Lahuis, Maria Morales-Calderón, Michael Mueller, Cyrine Nehmé, Göran Olofsson, Eric Pantin, Nicole Pawellek, Tom P. Ray, Donna Rodgers-Lee, Silvia Scheithauer, Jürgen Schreiber, Kamber Schwarz, Milou Temmink, Bart Vandenbussche, Marissa Vlasblom, L. B. F. M. Waters, Gillian Wright, Luis Colina, Thomas R. Greve, Kay Justannont, Göran Östlin

arXiv: 2212.08047v1 - DOI (astro-ph.SR)
11 pages, 7 figures. Submitted to ApJL, comments welcome
License: CC BY 4.0

Abstract: We present JWST-MIRI MRS spectra of the protoplanetary disk around the low-mass T Tauri star GW Lup from the MIRI mid-INfrared Disk Survey (MINDS) GTO program. Emission from $^{12}$CO$_{2}$, $^{13}$CO$_{2}$, H$_{2}$O, HCN, and C$_{2}$H$_{2}$ is identified in this disk with $^{13}$CO$_{2}$ being detected for the first time in a protoplanetary disk. We characterize the chemical and physical conditions in the inner few au of the GW Lup disk using these molecules as probes. The spectral resolution of JWST-MIRI MRS paired with high signal-to-noise data is essential to identify these species and determine their column densities and temperatures. The $Q$-branches of these molecules, including those of hot-bands, are particularly sensitive to temperature and column density. We find that the $^{12}$CO$_{2}$ emission in the GW Lup disk is very strong and is coming from optically thick emission at a temperature of $\sim$500 K. $^{13}$CO$_{2}$ is optically thinner, and tracing a larger emitting area than $^{12}$CO$_{2}$ and deeper into the disk based on a lower temperature of $\sim$200 K. The derived $N_{\rm{CO_{2}}}$/$N_{\rm{H_{2}O}}$ ratio of 0.25 is relatively high compared to other targets determined from \textit{Spitzer}-IRS data. This abundance ratio may be due to an inner cavity in the gas and dust with a radius in between the H$_{2}$O and CO$_{2}$ snowlines and/or a dust trap at this location keeping water-rich icy grains from passing the water snowline. This paper demonstrates the unique ability of JWST to probe inner disk structures and chemistry through weak, previously unseen molecular features.

Submitted to arXiv on 15 Dec. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.