Evaluating Alternative Glyph Design for Showing Large-Magnitude-Range Quantum Spins
Authors: Henan Zhao, Garnett W. Bryant, Wesley Griffin, Judith E. Terrill, Jian Chen
Abstract: We present experimental results to explore a form of bivariate glyphs for representing large-magnitude-range vectors. The glyphs meet two conditions: (1) two visual dimensions are separable; and (2) one of the two visual dimensions uses a categorical representation (e.g., a categorical colormap). We evaluate how much these two conditions determine the bivariate glyphs' effectiveness. The first experiment asks participants to perform three local tasks requiring reading no more than two glyphs. The second experiment scales up the search space in global tasks when participants must look at the entire scene of hundreds of vector glyphs to get an answer. Our results support that the first condition is necessary for local tasks when a few items are compared. But it is not enough to understand a large amount of data. The second condition is necessary for perceiving global structures of examining very complex datasets. Participants' comments reveal that the categorical features in the bivariate glyphs trigger emergent optimal viewers' behaviors. This work contributes to perceptually accurate glyph representations for revealing patterns from large scientific results. We release source code, quantum physics data, training documents, participants' answers, and statistical analyses for reproducible science https://osf.io/4xcf5/?view_only=94123139df9c4ac984a1e0df811cd580.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.