Data-centric AI: Perspectives and Challenges
Authors: Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Xia Hu
Abstract: The role of data in building AI systems has recently been significantly magnified by the emerging concept of data-centric AI (DCAI), which advocates a fundamental shift from model advancements to ensuring data quality and reliability. Although our community has continuously invested efforts into enhancing data in different aspects, they are often isolated initiatives on specific tasks. To facilitate the collective initiative in our community and push forward DCAI, we draw a big picture and bring together three general missions: training data development, evaluation data development, and data maintenance. We provide a top-level discussion on representative DCAI tasks and share perspectives. Finally, we list open challenges to motivate future exploration.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.