Improving Inference Performance of Machine Learning with the Divide-and-Conquer Principle
Authors: Alex Kogan
Abstract: Many popular machine learning models scale poorly when deployed on CPUs. In this paper we explore the reasons why and propose a simple, yet effective approach based on the well-known Divide-and-Conquer Principle to tackle this problem of great practical importance. Given an inference job, instead of using all available computing resources (i.e., CPU cores) for running it, the idea is to break the job into independent parts that can be executed in parallel, each with the number of cores according to its expected computational cost. We implement this idea in the popular OnnxRuntime framework and evaluate its effectiveness with several use cases, including the well-known models for optical character recognition (PaddleOCR) and natural language processing (BERT).
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.