Layout-guided Indoor Panorama Inpainting with Plane-aware Normalization
Authors: Chao-Chen Gao, Cheng-Hsiu Chen, Jheng-Wei Su, Hung-Kuo Chu
Abstract: We present an end-to-end deep learning framework for indoor panoramic image inpainting. Although previous inpainting methods have shown impressive performance on natural perspective images, most fail to handle panoramic images, particularly indoor scenes, which usually contain complex structure and texture content. To achieve better inpainting quality, we propose to exploit both the global and local context of indoor panorama during the inpainting process. Specifically, we take the low-level layout edges estimated from the input panorama as a prior to guide the inpainting model for recovering the global indoor structure. A plane-aware normalization module is employed to embed plane-wise style features derived from the layout into the generator, encouraging local texture restoration from adjacent room structures (i.e., ceiling, floor, and walls). Experimental results show that our work outperforms the current state-of-the-art methods on a public panoramic dataset in both qualitative and quantitative evaluations. Our code is available at https://ericsujw.github.io/LGPN-net/
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.