Carbon Depletion in the Early Solar System

Authors: Fabian Binkert, Til Birnstiel

arXiv: 2301.05706v1 - DOI (astro-ph.EP)
Accepted for publication in MNRAS

Abstract: Earth and other rocky objects in the inner Solar System are depleted in carbon compared to objects in the outer Solar System, the Sun, or the ISM. It is believed that this is a result of the selective removal of refractory carbon from primordial circumstellar material. In this work, we study the irreversible release of carbon into the gaseous environment via photolysis and pyrolysis of refractory carbonaceous material during the disk phase of the early Solar System. We analytically solve the one-dimensional advection equation and derive an explicit expression that describes the depletion of carbonaceous material in solids under the influence of radial and vertical transport. We find both depletion mechanisms individually fail to reproduce Solar System abundances under typical conditions. While radial transport only marginally restricts photodecomposition, it is the inefficient vertical transport that limits carbon depletion under these conditions. We show explicitly that an increase in the vertical mixing efficiency, and/or an increase in the directly irradiated disk volume, favors carbon depletion. Thermal decomposition requires a hot inner disk (> 500 K) beyond 3 AU to deplete the formation region of Earth and chondrites. We find FU Ori-type outbursts to produce these conditions such that moderately refractory compounds are depleted. However, such outbursts likely do not deplete the most refractory carbonaceous compounds beyond the innermost disk region. Hence, the refractory carbon abundance at 1 AU typically does not reach terrestrial levels. Nevertheless, under specific conditions, we find photolysis and pyrolysis combined to reproduce Solar System abundances.

Submitted to arXiv on 13 Jan. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.