Takeout and Delivery: Erasing the Dusty Signature of Late-stage Terrestrial Planet Formation

Authors: Joan R. Najita, Scott J. Kenyon

arXiv: 2301.05719v1 - DOI (astro-ph.EP)
20 pages, 3 figures, accepted for publication in ApJ
License: CC BY 4.0

Abstract: The formation of planets like Earth is expected to conclude with a series of late-stage giant impacts that generate warm dusty debris, the most anticipated visible signpost of terrestrial planet formation in progress. While there is now evidence that Earth-sized terrestrial planets orbit a significant fraction of solar-type stars, the anticipated dusty debris signature of their formation is rarely detected. Here we discuss several ways in which our current ideas about terrestrial planet formation imply transport mechanisms capable of erasing the anticipated debris signature. A tenuous gas disk may be regenerated via "takeout" (i.e., the liberation of planetary atmospheres in giant impacts) or "delivery" (i.e., by asteroids and comets flung into the terrestrial planet region) at a level sufficient to remove the warm debris. The powerful stellar wind from a young star can also act, its delivered wind momentum producing a drag that removes warm debris. If such processes are efficient, terrestrial planets may assemble inconspicuously, with little publicity and hoopla accompanying their birth. Alternatively, the rarity of warm excesses may imply that terrestrial planets typically form very early, emerging fully formed from the nebular phase without undergoing late-stage giant impacts. In either case, the observable signposts of terrestrial planet formation appear more challenging to detect than previously assumed. We discuss observational tests of these ideas.

Submitted to arXiv on 13 Jan. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.