Towards Modular Machine Learning Solution Development: Benefits and Trade-offs
Authors: Samiyuru Menik, Lakshmish Ramaswamy
Abstract: Machine learning technologies have demonstrated immense capabilities in various domains. They play a key role in the success of modern businesses. However, adoption of machine learning technologies has a lot of untouched potential. Cost of developing custom machine learning solutions that solve unique business problems is a major inhibitor to far-reaching adoption of machine learning technologies. We recognize that the monolithic nature prevalent in today's machine learning applications stands in the way of efficient and cost effective customized machine learning solution development. In this work we explore the benefits of modular machine learning solutions and discuss how modular machine learning solutions can overcome some of the major solution engineering limitations of monolithic machine learning solutions. We analyze the trade-offs between modular and monolithic machine learning solutions through three deep learning problems; one text based and the two image based. Our experimental results show that modular machine learning solutions have a promising potential to reap the solution engineering advantages of modularity while gaining performance and data advantages in a way the monolithic machine learning solutions do not permit.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.