Proactive and Reactive Engagement of Artificial Intelligence Methods for Education: A Review
Authors: Sruti Mallik, Ahana Gangopadhyay
Abstract: Quality education, one of the seventeen sustainable development goals (SDGs) identified by the United Nations General Assembly, stands to benefit enormously from the adoption of artificial intelligence (AI) driven tools and technologies. The concurrent boom of necessary infrastructure, digitized data and general social awareness has propelled massive research and development efforts in the artificial intelligence for education (AIEd) sector. In this review article, we investigate how artificial intelligence, machine learning and deep learning methods are being utilized to support students, educators and administrative staff. We do this through the lens of a novel categorization approach. We consider the involvement of AI-driven methods in the education process in its entirety - from students admissions, course scheduling etc. in the proactive planning phase to knowledge delivery, performance assessment etc. in the reactive execution phase. We outline and analyze the major research directions under proactive and reactive engagement of AI in education using a representative group of 194 original research articles published in the past two decades i.e., 2003 - 2022. We discuss the paradigm shifts in the solution approaches proposed, i.e., in the choice of data and algorithms used over this time. We further dive into how the COVID-19 pandemic challenged and reshaped the education landscape at the fag end of this time period. Finally, we pinpoint existing limitations in adopting artificial intelligence for education and reflect on the path forward.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.