Strictly Associative and Unital $\infty$-Categories as a Generalized Algebraic Theory
Authors: Eric Finster, Alex Rice, Jamie Vicary
Abstract: We present the first definition of strictly associative and unital $\infty$-category. Our proposal takes the form of a generalized algebraic theory, with operations that give the composition and coherence laws, and equations encoding the strict associative and unital structure. The key technical idea of the paper is an equality generator called insertion, which can ``insert'' an argument context into the head context, simplifying the syntax of a term. The equational theory is defined by a reduction relation, and we study its properties in detail, showing that it yields a decision procedure for equality. Expressed as a type theory, our model is well-adapted for generating and verifying efficient proofs of higher categorical statements. We illustrate this via an OCaml implementation, and give a number of examples, including a short encoding of the syllepsis, a 5-dimensional homotopy that plays an important role in the homotopy groups of spheres.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.