TextDefense: Adversarial Text Detection based on Word Importance Entropy

Authors: Lujia Shen, Xuhong Zhang, Shouling Ji, Yuwen Pu, Chunpeng Ge, Xing Yang, Yanghe Feng

License: CC BY-NC-ND 4.0

Abstract: Currently, natural language processing (NLP) models are wildly used in various scenarios. However, NLP models, like all deep models, are vulnerable to adversarially generated text. Numerous works have been working on mitigating the vulnerability from adversarial attacks. Nevertheless, there is no comprehensive defense in existing works where each work targets a specific attack category or suffers from the limitation of computation overhead, irresistible to adaptive attack, etc. In this paper, we exhaustively investigate the adversarial attack algorithms in NLP, and our empirical studies have discovered that the attack algorithms mainly disrupt the importance distribution of words in a text. A well-trained model can distinguish subtle importance distribution differences between clean and adversarial texts. Based on this intuition, we propose TextDefense, a new adversarial example detection framework that utilizes the target model's capability to defend against adversarial attacks while requiring no prior knowledge. TextDefense differs from previous approaches, where it utilizes the target model for detection and thus is attack type agnostic. Our extensive experiments show that TextDefense can be applied to different architectures, datasets, and attack methods and outperforms existing methods. We also discover that the leading factor influencing the performance of TextDefense is the target model's generalizability. By analyzing the property of the target model and the property of the adversarial example, we provide our insights into the adversarial attacks in NLP and the principles of our defense method.

Submitted to arXiv on 12 Feb. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.