A finite rotation, small strain 2D elastic head model, with applications in mild traumatic brain injury
Authors: Yang Wan, Wenqiang Fang, Rika Wright Carlsen, Haneesh Kesari
Abstract: Rotational head motions have been shown to play a key role in traumatic brain injury. There is great interest in developing methods to rapidly predict brain tissue strains and strain rates resulting from rotational head motions to estimate brain injury risk and to guide the design of protective equipment. Idealized continuum mechanics based head models provide an attractive approach for rapidly estimating brain strains and strain rates. These models are capable of capturing the wave dynamics and transient response of the brain while being significantly easier and faster to apply compared to more sophisticated and detailed finite element head models. In this work, we present a new idealized continuum mechanics based head model that accounts for the head's finite rotation, which is an improvement upon prior models that have been based on a small rotation assumption. Despite the simplicity of the model, we show that the proposed 2D elastic finite rotation head model predicts comparable strains to a more detailed finite element head model, demonstrating the potential usefulness of the model in rapidly estimating brain injury risk. This newly proposed model can serve as a basis for introducing finite rotations into more sophisticated head models in the future.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.