Imaging exoplanets with coronagraphic instruments

Authors: Raphaël Galicher, Johan Mazoyer

Comptes Rendus. Physique, Online first (2023), pp. 1-45
arXiv: 2302.10833v1 - DOI (astro-ph.EP)
Accepted for publication in Comptes Rendus Physique. 48 pages (including 12 pages of references). 16 figures

Abstract: Exoplanetary science is a very active field of astronomy nowadays, with questions still opened such as how planetary systems form and evolve (occurrence, process), why such a diversity of exoplanets is observed (mass, radius, orbital parameters, temperature, composition), and what are the interactions between planets, circumstellar disk and their host star. Several complementary methods are used for the detection of exoplanets. Among these, imaging aims at the direct detection of the light reflected, scattered or emitted by exoplanets and circumstellar disks. This allows their spectral and polarimetric characterization. Such imaging remains challenging because of the large luminosity ratio (1e4-1e10$) and the small angular separation (fraction of an arcsecond) between the star and its environment. Over the past two decades, numerous techniques, including coronagraphy, have been developed to make exoplanet imaging a reality. This review gives a broad overview of the subsystems that make up a coronagraphic instrument for imaging exoplanetary systems. It is especially intended for non-specialists or newcomers in the field. We explain the principle of coronagraphy and propose a formalism to understand their behavior. We discuss the impact of wavefront aberrations on the performance of coronagraphs and how they induce stellar speckles in the scientific image. Finally, we present instrumental and signal processing techniques used for on-sky minimization or a posteriori calibration of these speckles in order to improve the performance of coronagraphs.

Submitted to arXiv on 21 Feb. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.