Detecting virtual phothons in ultrastrongly coupled superconducting quantum circuits

Authors: L. Giannelli, E. Paladino, M. Grajcar, G. S. Paraoanu, G. Falci

arXiv: 2302.10973v1 - DOI (quant-ph)
16 pages, 9 figures

Abstract: Light-matter interaction, and understanding the fundamental physics behind, is essential for emerging quantum technologies. Solid-state devices may explore new regimes where coupling strengths are "ultrastrong", i.e. comparable to the energies of the subsystems. New exotic phenomena occur the common root of many of them being the fact that the entangled vacuum contains virtual photons. They herald the lack of conservation of the number of excitations which is the witness of ultrastrong coupling breaking the U(1) symmetry. Despite more than a decade of research, the detection of ground-state virtual photons still awaits demonstration. In this work, we provide a solution for this long-standing problem. Facing the main experimental obstacles, we find a design of an unconventional "light fluxonium"-like superconducting quantum circuit implemented by superinductors and a protocol of coherent amplification which yields a highly efficient, faithful and selective conversion of virtual photons into real ones. This enables their detection with resources available to present-day quantum technologies.

Submitted to arXiv on 21 Feb. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.