Graph-based Knowledge Distillation: A survey and experimental evaluation
Authors: Jing Liu, Tongya Zheng, Guanzheng Zhang, Qinfen Hao
Abstract: Graph, such as citation networks, social networks, and transportation networks, are prevalent in the real world. Graph Neural Networks (GNNs) have gained widespread attention for their robust expressiveness and exceptional performance in various graph applications. However, the efficacy of GNNs is heavily reliant on sufficient data labels and complex network models, with the former obtaining hardly and the latter computing costly. To address the labeled data scarcity and high complexity of GNNs, Knowledge Distillation (KD) has been introduced to enhance existing GNNs. This technique involves transferring the soft-label supervision of the large teacher model to the small student model while maintaining prediction performance. This survey offers a comprehensive overview of Graph-based Knowledge Distillation methods, systematically categorizing and summarizing them while discussing their limitations and future directions. This paper first introduces the background of graph and KD. It then provides a comprehensive summary of three types of Graph-based Knowledge Distillation methods, namely Graph-based Knowledge Distillation for deep neural networks (DKD), Graph-based Knowledge Distillation for GNNs (GKD), and Self-Knowledge Distillation based Graph-based Knowledge Distillation (SKD). Each type is further divided into knowledge distillation methods based on the output layer, middle layer, and constructed graph. Subsequently, various algorithms' ideas are analyzed and compared, concluding with the advantages and disadvantages of each algorithm supported by experimental results. In addition, the applications of graph-based knowledge distillation in CV, NLP, RS, and other fields are listed. Finally, the graph-based knowledge distillation is summarized and prospectively discussed. We have also released related resources at https://github.com/liujing1023/Graph-based-Knowledge-Distillation.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.