Spectral analysis of a parsec-scale jet in M87: Observational constraint on the magnetic field strengths in the jet

Authors: Hyunwook Ro, Motoki Kino, Bong Won Sohn, Kazuhiro Hada, Jongho Park, Masanori Nakamura, Yuzhu Cui, Kunwoo Yi, Aeree Chung, Jeffrey Hodgson, Tomohisa Kawashima, Tao An, Sascha Trippe, Juan-Carlos Algaba, Jae-Young Kim, Satoko Sawada-Satoh, Kiyoaki Wajima, Zhiqiang Shen, Xiaopeng Cheng, Ilje Cho, Wu Jiang, Taehyun Jung, Jee-Won Lee, Kotaro Niinuma, Junghwan Oh, Fumie Tazaki, Guang-Yao Zhao, Kazunori Akiyama, Mareki Honma, Jeong Ae Lee, Rusen Lu, Yingkang Zhang, Keiichi Asada, Lang Cui, Yoshiaki Hagiwara, Tomoya Hirota, Noriyuki Kawaguchi, Shoko Koyama, Sang-Sung Lee, Se-Jin Oh, Koichiro Sugiyama, Mieko Takamura, Xuezheng Wang, Ju-Yeon Hwang, Dong-Kyu Jung, Hyo-Ryoung Kim, Jeong-Sook Kim, Hideyuki Kobayashi, Chung-Sik Oh, Tomoaki Oyama, Duk-Gyoo Roh, Jae-Hwan Yeom

arXiv: 2303.01014v1 - DOI (astro-ph.HE)
16 pages, 9 figures. Accepted for publication in Astronomy & Astrophysics
License: CC BY 4.0

Abstract: Because of its proximity and the large size of its black hole, M87 is one of the best targets for studying the launching mechanism of active galactic nucleus jets. Currently, magnetic fields are considered to be an essential factor in the launching and accelerating of the jet. However, current observational estimates of the magnetic field strength of the M87 jet are limited to the innermost part of the jet or to HST-1. No attempt has yet been made to measure the magnetic field strength in between. We aim to infer the magnetic field strength of the M87 jet out to a distance of several thousand $r_s$ by tracking the distance-dependent changes in the synchrotron spectrum of the jet from high-resolution very long baseline interferometry observations. In order to obtain high-quality spectral index maps, quasi-simultaneous observations at 22 and 43 GHz were conducted using the KVN and VERA Array (KaVA) and the VLBA. We compared the spectral index distributions obtained from the observations with a model and placed limits on the magnetic field strengths as a function of distance. The overall spectral morphology is broadly consistent over the course of these observations. The observed synchrotron spectrum rapidly steepens from $\alpha_{22-43 GHz}$ ~ -0.7 at ~ 2 mas to $\alpha_{22-43 GHz}$ ~ -2.5 at ~ 6 mas. A spectral index model in which nonthermal electron injections inside the jet decrease with distance can adequately reproduce the observed trend. This suggests the magnetic field strength of the jet at a distance of 2 - 10 mas (~ 900 $r_s$ - ~ 4500 $r_s$ in the deprojected distance) has a range of $B=(0.3 - 1.0 G)(z/2 mas)^{-0.73}$. Extrapolating to the EHT scale yields consistent results, suggesting that the majority of the magnetic flux of the jet near the black hole is preserved out to ~ 4500 $r_s$ without significant dissipation.

Submitted to arXiv on 02 Mar. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.