Predicting Stock Price Movement as an Image Classification Problem
Authors: Matej Steinbacher
Abstract: The paper studies intraday price movement of stocks that is considered as an image classification problem. Using a CNN-based model we make a compelling case for the high-level relationship between the first hour of trading and the close. The algorithm managed to adequately separate between the two opposing classes and investing according to the algorithm's predictions outperformed all alternative constructs but the theoretical maximum. To support the thesis, we ran several additional tests. The findings in the paper highlight the suitability of computer vision techniques for studying financial markets and in particular prediction of stock price movements.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.