Deep-Learning-based Counting Methods, Datasets, and Applications in Agriculture -- A Review
Authors: Guy Farjon, Liu Huijun, Yael Edan
Abstract: The number of objects is considered an important factor in a variety of tasks in the agricultural domain. Automated counting can improve farmers decisions regarding yield estimation, stress detection, disease prevention, and more. In recent years, deep learning has been increasingly applied to many agriculture-related applications, complementing conventional computer-vision algorithms for counting agricultural objects. This article reviews progress in the past decade and the state of the art for counting methods in agriculture, focusing on deep-learning methods. It presents an overview of counting algorithms, metrics, platforms, and sensors, a list of all publicly available datasets, and an in-depth discussion of various deep-learning methods used for counting. Finally, it discusses open challenges in object counting using deep learning and gives a glimpse into new directions and future perspectives for counting research. The review reveals a major leap forward in object counting in agriculture in the past decade, led by the penetration of deep learning methods into counting platforms.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.