A Review of Deep Learning-Powered Mesh Reconstruction Methods

Authors: Zhiqin Chen

Abstract: With the recent advances in hardware and rendering techniques, 3D models have emerged everywhere in our life. Yet creating 3D shapes is arduous and requires significant professional knowledge. Meanwhile, Deep learning has enabled high-quality 3D shape reconstruction from various sources, making it a viable approach to acquiring 3D shapes with minimal effort. Importantly, to be used in common 3D applications, the reconstructed shapes need to be represented as polygonal meshes, which is a challenge for neural networks due to the irregularity of mesh tessellations. In this survey, we provide a comprehensive review of mesh reconstruction methods that are powered by machine learning. We first describe various representations for 3D shapes in the deep learning context. Then we review the development of 3D mesh reconstruction methods from voxels, point clouds, single images, and multi-view images. Finally, we identify several challenges in this field and propose potential future directions.

Submitted to arXiv on 06 Mar. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.