Automatic Attention Pruning: Improving and Automating Model Pruning using Attentions
Authors: Kaiqi Zhao, Animesh Jain, Ming Zhao
Abstract: Pruning is a promising approach to compress deep learning models in order to deploy them on resource-constrained edge devices. However, many existing pruning solutions are based on unstructured pruning, which yields models that cannot efficiently run on commodity hardware; and they often require users to manually explore and tune the pruning process, which is time-consuming and often leads to sub-optimal results. To address these limitations, this paper presents Automatic Attention Pruning (AAP), an adaptive, attention-based, structured pruning approach to automatically generate small, accurate, and hardware-efficient models that meet user objectives. First, it proposes iterative structured pruning using activation-based attention maps to effectively identify and prune unimportant filters. Then, it proposes adaptive pruning policies for automatically meeting the pruning objectives of accuracy-critical, memory-constrained, and latency-sensitive tasks. A comprehensive evaluation shows that AAP substantially outperforms the state-of-the-art structured pruning works for a variety of model architectures. Our code is at: https://github.com/kaiqi123/Automatic-Attention-Pruning.git.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.