PFT-SSR: Parallax Fusion Transformer for Stereo Image Super-Resolution

Authors: Hansheng Guo, Juncheng Li, Guangwei Gao, Zhi Li, Tieyong Zeng

ICASSP 2023
5 pages, 3 figures
License: CC BY 4.0

Abstract: Stereo image super-resolution aims to boost the performance of image super-resolution by exploiting the supplementary information provided by binocular systems. Although previous methods have achieved promising results, they did not fully utilize the information of cross-view and intra-view. To further unleash the potential of binocular images, in this letter, we propose a novel Transformerbased parallax fusion module called Parallax Fusion Transformer (PFT). PFT employs a Cross-view Fusion Transformer (CVFT) to utilize cross-view information and an Intra-view Refinement Transformer (IVRT) for intra-view feature refinement. Meanwhile, we adopted the Swin Transformer as the backbone for feature extraction and SR reconstruction to form a pure Transformer architecture called PFT-SSR. Extensive experiments and ablation studies show that PFT-SSR achieves competitive results and outperforms most SOTA methods. Source code is available at https://github.com/MIVRC/PFT-PyTorch.

Submitted to arXiv on 24 Mar. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.