Femtosecond pulse parameter estimation from photoelectron momenta using machine learning
Authors: Tomasz Szołdra, Marcelo F. Ciappina, Nicholas Werby, Philip H. Bucksbaum, Maciej Lewenstein, Jakub Zakrzewski, Andrew S. Maxwell
Abstract: Deep learning models have provided huge interpretation power for image-like data. Specifically, convolutional neural networks (CNNs) have demonstrated incredible acuity for tasks such as feature extraction or parameter estimation. Here we test CNNs on strong-field ionization photoelectron spectra, training on theoretical data sets to `invert' experimental data. Pulse characterization is used as a `testing ground', specifically we retrieve the laser intensity, where `traditional' measurements typically lead to 20% uncertainty. We report on crucial data augmentation techniques required to successfully train on theoretical data and return consistent results from experiments, including accounting for detector saturation. The same procedure can be repeated to apply CNNs in a range of scenarios for strong-field ionization. Using a predictive uncertainty estimation, reliable laser intensity uncertainties of a few percent can be extracted, which are consistently lower than those given by traditional techniques. Using interpretability methods can reveal parts of the distribution that are most sensitive to laser intensity, which can be directly associated with holographic interferences. The CNNs employed provide an accurate and convenient ways to extract parameters, and represent a novel interpretational tool for strong-field ionization spectra.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.