DiffuScene: Scene Graph Denoising Diffusion Probabilistic Model for Generative Indoor Scene Synthesis
Authors: Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus Thies, Matthias Nießner
Abstract: We present DiffuScene for indoor 3D scene synthesis based on a novel scene graph denoising diffusion probabilistic model, which generates 3D instance properties stored in a fully-connected scene graph and then retrieves the most similar object geometry for each graph node i.e. object instance which is characterized as a concatenation of different attributes, including location, size, orientation, semantic, and geometry features. Based on this scene graph, we designed a diffusion model to determine the placements and types of 3D instances. Our method can facilitate many downstream applications, including scene completion, scene arrangement, and text-conditioned scene synthesis. Experiments on the 3D-FRONT dataset show that our method can synthesize more physically plausible and diverse indoor scenes than state-of-the-art methods. Extensive ablation studies verify the effectiveness of our design choice in scene diffusion models.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.