Spectroscopic verification of very luminous galaxy candidates in the early universe

Authors: Pablo Arrabal Haro, Mark Dickinson, Steven L. Finkelstein, Jeyhan S. Kartaltepe, Callum T. Donnan, Denis Burgarella, Adam Carnall, Fergus Cullen, James S. Dunlop, Vital Fernández, Seiji Fujimoto, Intae Jung, Melanie Krips, Rebecca L. Larson, Casey Papovich, Pablo G. Pérez-González, Ricardo O. Amorín, Micaela B. Bagley, Véronique Buat, Caitlin M. Casey, Katherine Chworowsky, Seth H. Cohen, Henry C. Ferguson, Mauro Giavalisco, Marc Huertas-Company, Taylor A. Hutchison, Dale D. Kocevski, Anton M. Koekemoer, Ray A. Lucas, Derek J. McLeod, Ross J. McLure, Norbert Pirzkal, Jonathan R. Trump, Benjamin J. Weiner, Stephen M. Wilkins, Jorge A. Zavala

arXiv: 2303.15431v1 - DOI (astro-ph.GA)
Submitted to Nature
License: CC BY 4.0

Abstract: During the first 500 million years of cosmic history, the first stars and galaxies formed and seeded the cosmos with heavy elements. These early galaxies illuminated the transition from the cosmic "dark ages" to the reionization of the intergalactic medium. This transitional period has been largely inaccessible to direct observation until the recent commissioning of JWST, which has extended our observational reach into that epoch. Excitingly, the first JWST science observations uncovered a surprisingly high abundance of early star-forming galaxies. However, the distances (redshifts) of these galaxies were, by necessity, estimated from multi-band photometry. Photometric redshifts, while generally robust, can suffer from uncertainties and/or degeneracies. Spectroscopic measurements of the precise redshifts are required to validate these sources and to reliably quantify their space densities, stellar masses, and star formation rates, which provide powerful constraints on galaxy formation models and cosmology. Here we present the results of JWST follow-up spectroscopy of a small sample of galaxies suspected to be amongst the most distant yet observed. We confirm redshifts z > 10 for two galaxies, including one of the first bright JWST-discovered candidates with z = 11.4, and show that another galaxy with suggested z ~ 16 instead has z = 4.9, with strong emission lines that mimic the expected colors of more distant objects. These results reinforce the evidence for the rapid production of luminous galaxies in the very young Universe, while also highlighting the necessity of spectroscopic verification for remarkable candidates.

Submitted to arXiv on 27 Mar. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.