Switched Moving Boundary Modeling of Phase Change Thermal Energy Storage Systems
Authors: Trent J. Sakakini, Justin P. Koeln
Abstract: Thermal Energy Storage (TES) devices, which leverage the constant-temperature thermal capacity of the latent heat of a Phase Change Material (PCM), provide benefits to a variety of thermal management systems by decoupling the absorption and rejection of thermal energy. While performing a role similar to a battery in an electrical system, it is critical to know when to charge (freeze) and discharge (melt) the TES to maximize the capabilities and efficiency of the overall system. Therefore, control-oriented models of TES are needed to predict the behavior of the TES and make informed control decisions. While existing modeling approaches divide the TES in to multiple sections using a Fixed Grid (FG) approach, this paper proposes a switched Moving Boundary (MB) model that captures the key dynamics of the TES with significantly fewer dynamic states. Specifically, a graph-based modeling approach is used to model the heat flow through the TES and a MB approach is used to model the time-varying liquid and solid regions of the TES. Additionally, a Finite State Machine (FSM) is used to switch between four different modes of operation based on the State-of-Charge (SOC) of the TES. Numerical simulations comparing the proposed approach with a more traditional FG approach show that the MB model is capable of accurately modeling the behavior of the FG model while using far fewer states, leading to five times faster simulations.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.