LLMMaps -- A Visual Metaphor for Stratified Evaluation of Large Language Models

Authors: Patrik Puchert, Poonam Poonam, Christian van Onzenoodt, Timo Ropinski

License: CC BY 4.0

Abstract: Large Language Models (LLMs) have revolutionized natural language processing and demonstrated impressive capabilities in various tasks. Unfortunately, they are prone to hallucinations, where the model exposes incorrect or false information in its responses, which renders diligent evaluation approaches mandatory. While LLM performance in specific knowledge fields is often evaluated based on question and answer (Q&A) datasets, such evaluations usually report only a single accuracy number for the entire field, a procedure which is problematic with respect to transparency and model improvement. A stratified evaluation could instead reveal subfields, where hallucinations are more likely to occur and thus help to better assess LLMs' risks and guide their further development. To support such stratified evaluations, we propose LLMMaps as a novel visualization technique that enables users to evaluate LLMs' performance with respect to Q&A datasets. LLMMaps provide detailed insights into LLMs' knowledge capabilities in different subfields, by transforming Q&A datasets as well as LLM responses into our internal knowledge structure. An extension for comparative visualization furthermore, allows for the detailed comparison of multiple LLMs. To assess LLMMaps we use them to conduct a comparative analysis of several state-of-the-art LLMs, such as BLOOM, GPT-2, GPT-3, ChatGPT and LLaMa-13B, as well as two qualitative user evaluations. All necessary source code and data for generating LLMMaps to be used in scientific publications and elsewhere will be available on GitHub.

Submitted to arXiv on 02 Apr. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.