Analysis of Software Engineering Practices in General Software and Machine Learning Startups

Authors: Bishal Lakha, Kalyan Bhetwal, Nasir U. Eisty

Accepted at the 21st IEEE/ACIS International Conference on Software Engineering Research, Management and Applications (SERA 2023)
License: CC BY 4.0

Abstract: Context: On top of the inherent challenges startup software companies face applying proper software engineering practices, the non-deterministic nature of machine learning techniques makes it even more difficult for machine learning (ML) startups. Objective: Therefore, the objective of our study is to understand the whole picture of software engineering practices followed by ML startups and identify additional needs. Method: To achieve our goal, we conducted a systematic literature review study on 37 papers published in the last 21 years. We selected papers on both general software startups and ML startups. We collected data to understand software engineering (SE) practices in five phases of the software development life-cycle: requirement engineering, design, development, quality assurance, and deployment. Results: We find some interesting differences in software engineering practices in ML startups and general software startups. The data management and model learning phases are the most prominent among them. Conclusion: While ML startups face many similar challenges to general software startups, the additional difficulties of using stochastic ML models require different strategies in using software engineering practices to produce high-quality products.

Submitted to arXiv on 04 Apr. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.