Tracing and Visualizing Human-ML/AI Collaborative Processes through Artifacts of Data Work

Authors: Jennifer Rogers and, Anamaria Crisan

CHI 2023 Best Paper Honorable Mention
License: CC BY 4.0

Abstract: Automated Machine Learning (AutoML) technology can lower barriers in data work yet still requires human intervention to be functional. However, the complex and collaborative process resulting from humans and machines trading off work makes it difficult to trace what was done, by whom (or what), and when. In this research, we construct a taxonomy of data work artifacts that captures AutoML and human processes. We present a rigorous methodology for its creation and discuss its transferability to the visual design process. We operationalize the taxonomy through the development of AutoMLTrace, a visual interactive sketch showing both the context and temporality of human-ML/AI collaboration in data work. Finally, we demonstrate the utility of our approach via a usage scenario with an enterprise software development team. Collectively, our research process and findings explore challenges and fruitful avenues for developing data visualization tools that interrogate the sociotechnical relationships in automated data work.

Submitted to arXiv on 05 Apr. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.