FACE-AUDITOR: Data Auditing in Facial Recognition Systems

Authors: Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Yang Zhang

To appear in the 32nd USENIX Security Symposium, August 2023, Anaheim, CA, USA
License: CC BY-NC-SA 4.0

Abstract: Few-shot-based facial recognition systems have gained increasing attention due to their scalability and ability to work with a few face images during the model deployment phase. However, the power of facial recognition systems enables entities with moderate resources to canvas the Internet and build well-performed facial recognition models without people's awareness and consent. To prevent the face images from being misused, one straightforward approach is to modify the raw face images before sharing them, which inevitably destroys the semantic information, increases the difficulty of retroactivity, and is still prone to adaptive attacks. Therefore, an auditing method that does not interfere with the facial recognition model's utility and cannot be quickly bypassed is urgently needed. In this paper, we formulate the auditing process as a user-level membership inference problem and propose a complete toolkit FACE-AUDITOR that can carefully choose the probing set to query the few-shot-based facial recognition model and determine whether any of a user's face images is used in training the model. We further propose to use the similarity scores between the original face images as reference information to improve the auditing performance. Extensive experiments on multiple real-world face image datasets show that FACE-AUDITOR can achieve auditing accuracy of up to $99\%$. Finally, we show that FACE-AUDITOR is robust in the presence of several perturbation mechanisms to the training images or the target models. The source code of our experiments can be found at \url{https://github.com/MinChen00/Face-Auditor}.

Submitted to arXiv on 05 Apr. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.