Deep reinforcement learning reveals fewer sensors are needed for autonomous gust alleviation
Authors: Kevin PT. Haughn, Christina Harvey, Daniel J. Inman
Abstract: There is a growing need for uncrewed aerial vehicles (UAVs) to operate in cities. However, the uneven urban landscape and complex street systems cause large-scale wind gusts that challenge the safe and effective operation of UAVs. Current gust alleviation methods rely on traditional control surfaces and computationally expensive modeling to select a control action, leading to a slower response. Here, we used deep reinforcement learning to create an autonomous gust alleviation controller for a camber-morphing wing. This method reduced gust impact by 84%, directly from real-time, on-board pressure signals. Notably, we found that gust alleviation using signals from only three pressure taps was statistically indistinguishable from using six signals. This reduced-sensor fly-by-feel control opens the door to UAV missions in previously inoperable locations.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.