Non-thermal particle acceleration and power-law tails via relaxation to universal Lynden-Bell equilibria

Authors: Robert J. Ewart, Michael L. Nastac, Alexander A. Schekochihin

arXiv: 2304.03715v1 - DOI (physics.plasm-ph)
28 pages, 5 figures

Abstract: Collisionless and weakly collisional plasmas often exhibit non-thermal quasi-equilibria. Among these quasi-equilibria, distributions with power-law tails are ubiquitous. It is shown that the statistical-mechanical approach originally suggested by Lynden-Bell (1967) can easily recover such power-law tails. Moreover, we show that, despite the apparent diversity of Lynden-Bell equilibria, a generic form of the equilibrium distribution at high energies is a `hard' power-law tail $\propto \varepsilon^{-2}$, where $\varepsilon$ is the particle energy. The shape of the `core' of the distribution, located at low energies, retains some dependence on the initial condition but it is the tail (or `halo') that contains most of the energy. Thus, a degree of universality exists in collisionless plasmas.

Submitted to arXiv on 07 Apr. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.