Large Language Models for Business Process Management: Opportunities and Challenges
Authors: Maxim Vidgof, Stefan Bachhofner, Jan Mendling
Abstract: Large language models are deep learning models with a large number of parameters. The models made noticeable progress on a large number of tasks, and as a consequence allowing them to serve as valuable and versatile tools for a diverse range of applications. Their capabilities also offer opportunities for business process management, however, these opportunities have not yet been systematically investigated. In this paper, we address this research problem by foregrounding various management tasks of the BPM lifecycle. We investigate six research directions highlighting problems that need to be addressed when using large language models, including usage guidelines for practitioners.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.