Spectroscopic confirmation of CEERS NIRCam-selected galaxies at $\boldsymbol{z \simeq 8-10}$

Authors: Pablo Arrabal Haro, Mark Dickinson, Steven L. Finkelstein, Seiji Fujimoto, Vital Fernández, Jeyhan S. Kartaltepe, Intae Jung, Justin W. Cole, Denis Burgarella, Katherine Chworowsky, Taylor A. Hutchison, Alexa M. Morales, Casey Papovich, Raymond C. Simons, Ricardo O. Amorín, Bren E. Backhaus, Micaela B. Bagley, Laura Bisigello, Antonello Calabrò, Marco Castellano, Nikko J. Cleri, Romeel Davé, Avishai Dekel, Henry C. Ferguson, Adriano Fontana, Eric Gawiser, Mauro Giavalisco, Santosh Harish, Nimish P. Hathi, Michaela Hirschmann, Benne W. Holwerda, Marc Huertas-Company, Anton M. Koekemoer, Rebecca L. Larson, Ray A. Lucas, Bahram Mobasher, Pablo G. Pérez-González, Nor Pirzkal, Caitlin Rose, Paola Santini, Jonathan R. Trump, Alexander de la Vega, Xin Wang, Benjamin J. Weiner, Stephen M. Wilkins, Guang Yang, L. Y. Aaron Yung, Jorge A. Zavala

arXiv: 2304.05378v1 - DOI (astro-ph.GA)
Submitted to ApJL. 24 pages, 9 figures, 7 tables. File with Table 6 included in source .tar file
License: CC BY 4.0

Abstract: We present JWST/NIRSpec prism spectroscopy of seven galaxies selected from the Cosmic Evolution Early Release Science Survey (CEERS) NIRCam imaging with photometric redshifts z_phot>8. We measure emission line redshifts of z=7.65 and 8.64 for two galaxies, and z=9.77(+0.37,-0.29) and 10.01(+0.14,-0.19) for two others via the detection of continuum breaks consistent with Lyman-alpha opacity from a mostly neutral intergalactic medium. The presence (absense) of strong breaks (strong emission lines) give high confidence that these two galaxies are at z>9.6, but the break-derived redshifts have large uncertainties given the low spectral resolution and relatively low signal-to-noise of the CEERS NIRSpec prism data. The two z~10 sources are relatively luminous (M_UV<-20), with blue continua (-2.3<beta<-1.9) and low dust attenuation (A_V=0.15(+0.3,-0.1)); and at least one of them has high stellar mass for a galaxy at that redshift (log(M_*/M_sol)=9.3(+0.2,-0.3)). Considered together with spectroscopic observations of other CEERS NIRCam-selected high-z galaxy candidates in the literature, we find a high rate of redshift confirmation and low rate of confirmed interlopers (8.3%). Ten out of 34 z>8 candidates with CEERS NIRSpec spectroscopy do not have secure redshifts, but the absence of emission lines in their spectra is consistent with redshifts z>9.6. We find that z>8 photometric redshifts are generally in agreement (within uncertainties) with the spectroscopic values. However, the photometric redshifts tend to be slightly overestimated (average Delta(z)=0.50+/-0.12), suggesting that current templates do not fully describe the spectra of very high-z sources. Overall, our results solidifies photometric evidence for a high space density of bright galaxies at z>8 compared to theoretical model predictions, and further disfavors an accelerated decline in the integrated UV luminosity density at z>8.

Submitted to arXiv on 11 Apr. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.