Smooth multi-patch scaled boundary isogeometric analysis for Kirchhoff-Love shells
Authors: Mathias Reichle, Jeremias Arf, Bernd Simeon, Sven Klinkel
Abstract: In this work, a linear Kirchhoff-Love shell formulation in the framework of scaled boundary isogeometric analysis is presented that aims to provide a simple approach to trimming for NURBS-based shell analysis. To obtain a global C1-regular test function space for the shell discretization, an inter-patch coupling is applied with adjusted basis functions in the vicinity of the scaling center to ensure the approximation ability. Doing so, the scaled boundary geometries are related to the concept of analysis-suitable G1 parametrizations. This yields a coupling of patch boundaries in a strong sense that is restricted to G1-smooth surfaces. The proposed approach is advantageous to trimmed geometries due to the incorporation of the trimming curve in the boundary representation that provides an exact representation in the planar domain. The potential of the approach is demonstrated by several problems of untrimmed and trimmed geometries of Kirchhoff-Love shell analysis evaluated against error norms and displacements. Lastly, the applicability is highlighted in the analysis of a violin structure including arbitrarily shaped patches.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.