Acousto-Optic Modulation in Ambient Air
Authors: Yannick Schrödel, Claas Hartmann, Tino Lang, Jiaan Zheng, Max Steudel, Matthias Rutsch, Sarper H. Salman, Martin Kellert, Mikhail Pergament, Thomas Hahn-Jose, Sven Suppelt, Jan Helge Dörsam, Anne Harth, Wim P. Leemans, Franz X. Kärtner, Ingmar Hartl, Mario Kupnik, Christoph M. Heyl
Abstract: Control over intensity, shape, direction and phase of coherent light is a cornerstone of 20 photonics. Modern laser optics, however, frequently demands parameter regimes where either the wavelength or the optical power restricts control e.g. due to absorption or damage. Limitations are imposed by the properties of solid media, upon which most photonic control schemes rely. We propose to circumvent these limitations using gas media tailored by high-intensity ultrasound waves. We demonstrate a first implementation of this approach by modulating ultrashort laser 25 pulses using ultrasound waves in ambient air, entirely omitting transmissive solid media. At peak powers of 20 GW exceeding the limits of solid-based acousto-optical modulation by about three orders of magnitude, we reach a diffraction efficiency greater than 50% while preserving excellent beam quality. Our results open a route towards versatile gas-phase Sono-Photonic methods, i.e. gas-based photonic systems controlled by sonic waves.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.