Fairness And Bias in Artificial Intelligence: A Brief Survey of Sources, Impacts, And Mitigation Strategies

Authors: Emilio Ferrara

Sci 2024, 6(1), 3

Abstract: The significant advancements in applying Artificial Intelligence (AI) to healthcare decision-making, medical diagnosis, and other domains have simultaneously raised concerns about the fairness and bias of AI systems. This is particularly critical in areas like healthcare, employment, criminal justice, credit scoring, and increasingly, in generative AI models (GenAI) that produce synthetic media. Such systems can lead to unfair outcomes and perpetuate existing inequalities, including generative biases that affect the representation of individuals in synthetic data. This survey paper offers a succinct, comprehensive overview of fairness and bias in AI, addressing their sources, impacts, and mitigation strategies. We review sources of bias, such as data, algorithm, and human decision biases - highlighting the emergent issue of generative AI bias where models may reproduce and amplify societal stereotypes. We assess the societal impact of biased AI systems, focusing on the perpetuation of inequalities and the reinforcement of harmful stereotypes, especially as generative AI becomes more prevalent in creating content that influences public perception. We explore various proposed mitigation strategies, discussing the ethical considerations of their implementation and emphasizing the need for interdisciplinary collaboration to ensure effectiveness. Through a systematic literature review spanning multiple academic disciplines, we present definitions of AI bias and its different types, including a detailed look at generative AI bias. We discuss the negative impacts of AI bias on individuals and society and provide an overview of current approaches to mitigate AI bias, including data pre-processing, model selection, and post-processing. We emphasize the unique challenges presented by generative AI models and the importance of strategies specifically tailored to address these.

Submitted to arXiv on 16 Apr. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.