Saturn's Interior After the Cassini Grand Finale

Authors: J. J. Fortney, B. Militzer, C. R. Mankovich, R. Helled, S. M. Wahl, N. Nettelmann, W. B. Hubbard, D. J. Stevenson, L. Iess, M. S. Marley, N. Movshovitz

arXiv: 2304.09215v1 - DOI (astro-ph.EP)
Invited review. Accepted for publication in "Saturn: The Grand Finale", K. H. Baines et al., eds., Cambridge University Press. All-new follow-up to previous 2016 (pre-Grand Finale) review chapter here: arXiv:1609.06324
License: CC BY 4.0

Abstract: We present a review of Saturn's interior structure and thermal evolution, with a particular focus on work in the past 5 years. Data from the Cassini mission, including a precise determination of the gravity field from the Grand Finale orbits, and the still ongoing identification of ring wave features in Saturn's C-ring tied to seismic modes in the planet, have led to dramatic advances in our understanding of Saturn's structure. Models that match the gravity field suggest that differential rotation, as seen in the visible atmosphere, extends down to at least a depth of 10,000 km (1/6$^{\rm th}$ the planet's radius). At greater depths, a variety of different investigations all now point to a deep Saturn rotation rate of 10 hours and 33 minutes. There is very compelling evidence for a central heavy element concentration (``core''), that in most recent models is 12-20 Earth masses. Ring seismology strongly suggests that the core is not entirely compact, but is dilute (mixed in with the overlying H/He), and has a substantial radial extent, perhaps out to around one-half of the planet's radius. A wide range of thermal evolution scenarios can match the planet's current luminosity, with progress on better quantifying the helium rain scenario hampered by Saturn's poorly known atmospheric helium abundance. We discuss the relevance of magnetic field data on understanding the planet's current interior structure. We point towards additional future work that combines seismology and gravity within a framework that includes differential rotation, and the utility of a Saturn entry probe.

Submitted to arXiv on 18 Apr. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.