Generalizing Neural Human Fitting to Unseen Poses With Articulated SE(3) Equivariance

Authors: Haiwen Feng, Peter Kulits, Shichen Liu, Michael J. Black, Victoria Abrevaya

Project page: https://arteq.is.tue.mpg.de

Abstract: We address the problem of fitting a parametric human body model (SMPL) to point cloud data. Optimization-based methods require careful initialization and are prone to becoming trapped in local optima. Learning-based methods address this but do not generalize well when the input pose is far from those seen during training. For rigid point clouds, remarkable generalization has been achieved by leveraging SE(3)-equivariant networks, but these methods do not work on articulated objects. In this work we extend this idea to human bodies and propose ArtEq, a novel part-based SE(3)-equivariant neural architecture for SMPL model estimation from point clouds. Specifically, we learn a part detection network by leveraging local SO(3) invariance, and regress shape and pose using articulated SE(3) shape-invariant and pose-equivariant networks, all trained end-to-end. Our novel equivariant pose regression module leverages the permutation-equivariant property of self-attention layers to preserve rotational equivariance. Experimental results show that ArtEq can generalize to poses not seen during training, outperforming state-of-the-art methods by 74.5%, without requiring an optimization refinement step. Further, compared with competing works, our method is more than three orders of magnitude faster during inference and has 97.3% fewer parameters. The code and model will be available for research purposes at https://arteq.is.tue.mpg.de.

Submitted to arXiv on 20 Apr. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.