Dust attenuation law in JWST galaxies at z = 7-8
Authors: V. Markov, S. Gallerani, A. Pallottini, L. Sommovigo, S. Carniani, A. Ferrara, E. Parlanti, F. Di Mascia
Abstract: Attenuation curves in galaxies depend on dust chemical composition, content, and grain size distribution. Such parameters are related to intrinsic galaxy properties such as metallicity, star formation rate, and stellar age. Due to the lack of observational constraints at high redshift, dust empirical curves measured in the local Universe (e.g. Calzetti and SMC curves) have been employed to describe the dust attenuation at early epochs. We exploit the high sensitivity and spectral resolution of the JWST to constrain the dust attenuation curves in high-z galaxies. Our goals are to check whether dust attenuation curves evolve with redshift and quantify the dependence of the inferred galaxy properties on the assumed dust attenuation law. We develop a modified version of the SED fitting code BAGPIPES by including a detailed dust attenuation curve parametrization. Dust parameters are derived, along with galaxy properties, from the fit to the data from FUV to mm bands. Once applied to three star-forming galaxies at z = 7-8, we find that their attenuation curves differ from local templates. One out of three galaxies shows a characteristic MW bump, typically associated to the presence of small carbonaceous dust grains such as PAHs. This is one of the first evidences suggesting the presence of PAHs in early galaxies. Galaxy properties such as stellar mass and SFR inferred from SED fitting are strongly affected by the assumed attenuation curve, though the adopted star formation history also plays a major role. Our results highlight the importance of accounting for the potential diversity of dust attenuation laws when analyzing the properties of galaxies at the EoR, whose dust properties are still poorly understood. The application of our method to a larger sample of galaxies observed with JWST can provide us important insights into the properties of dust and galaxies in the early universe.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.