Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities
Authors: Xianhao Chen, Yiqin Deng, Haichuan Ding, Guanqiao Qu, Haixia Zhang, Pan Li, Yuguang Fang
Abstract: Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing an economically effective and sustainable approach for building smart cities.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.