The Gaia-ESO Survey: Empirical estimates of stellar ages from lithium equivalent widths (EAGLES)
Authors: R. D. Jeffries, R. J. Jackson, Nicholas J. Wright, G. Weaver, G. Gilmore, S. Randich, A. Bragaglia, A. J. Korn, R. Smiljanic, K. Biazzo, A. R. Casey, A. Frasca, A. Gonneau, G. Guiglion, L. Morbidelli, L. Prisinzano, G. G. Sacco, G. Tautvaišienė, C. C. Worley, S. Zaggia
Abstract: We present an empirical model of age-dependent photospheric lithium depletion, calibrated using a large, homogeneously-analysed sample of 6200 stars in 52 open clusters, with ages from 2--6000 Myr and $-0.3<{\rm [Fe/H}]<0.2$, observed in the Gaia-ESO spectroscopic survey. The model is used to obtain age estimates and posterior age probability distributions from measurements of the Li I 6708A equivalent width for individual (pre) main sequence stars with $3000 < T_{\rm eff}/{\rm K} <6500$, a domain where age determination from the HR diagram is either insensitive or highly model-dependent. In the best cases, precisions of 0.1 dex in log age are achievable; even higher precision can be obtained for coeval groups and associations where the individual age probabilities of their members can be combined. The method is validated on a sample of exoplanet-hosting young stars, finding agreement with claimed young ages for some, but not others. We obtain better than 10 per cent precision in age, and excellent agreement with published ages, for seven well-studied young moving groups. The derived ages for young clusters ($<1$ Gyr) in our sample are also in good agreement with their training ages, and consistent with several published, model-insensitive lithium depletion boundary ages. For older clusters there remain systematic age errors that could be as large as a factor of two. There is no evidence to link these errors to any strong systematic metallicity dependence of (pre) main sequence lithium depletion, at least in the range $-0.29 < {\rm [Fe/H]} < 0.18$. Our methods and model are provided as software -- "Empirical AGes from Lithium Equivalent widthS" (EAGLES).
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.