Analyzing In-browser Cryptojacking

Authors: Muhammad Saad, David Mohaisen

14 pages, 11 tables, 8 figures, and 69 references. arXiv admin note: substantial text overlap with arXiv:1809.02152
License: CC BY-NC-ND 4.0

Abstract: Cryptojacking is the permissionless use of a target device to covertly mine cryptocurrencies. With cryptojacking, attackers use malicious JavaScript codes to force web browsers into solving proof-of-work puzzles, thus making money by exploiting the resources of the website visitors. To understand and counter such attacks, we systematically analyze the static, dynamic, and economic aspects of in-browser cryptojacking. For static analysis, we perform content, currency, and code-based categorization of cryptojacking samples to 1) measure their distribution across websites, 2) highlight their platform affinities, and 3) study their code complexities. We apply machine learning techniques to distinguish cryptojacking scripts from benign and malicious JavaScript samples with 100\% accuracy. For dynamic analysis, we analyze the effect of cryptojacking on critical system resources, such as CPU and battery usage. We also perform web browser fingerprinting to analyze the information exchange between the victim node and the dropzone cryptojacking server. We also build an analytical model to empirically evaluate the feasibility of cryptojacking as an alternative to online advertisement. Our results show a sizeable negative profit and loss gap, indicating that the model is economically infeasible. Finally, leveraging insights from our analyses, we build countermeasures for in-browser cryptojacking that improve the existing remedies.

Submitted to arXiv on 26 Apr. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.