Translate to Disambiguate: Zero-shot Multilingual Word Sense Disambiguation with Pretrained Language Models
Authors: Haoqiang Kang, Terra Blevins, Luke Zettlemoyer
Abstract: Pretrained Language Models (PLMs) learn rich cross-lingual knowledge and can be finetuned to perform well on diverse tasks such as translation and multilingual word sense disambiguation (WSD). However, they often struggle at disambiguating word sense in a zero-shot setting. To better understand this contrast, we present a new study investigating how well PLMs capture cross-lingual word sense with Contextual Word-Level Translation (C-WLT), an extension of word-level translation that prompts the model to translate a given word in context. We find that as the model size increases, PLMs encode more cross-lingual word sense knowledge and better use context to improve WLT performance. Building on C-WLT, we introduce a zero-shot approach for WSD, tested on 18 languages from the XL-WSD dataset. Our method outperforms fully supervised baselines on recall for many evaluation languages without additional training or finetuning. This study presents a first step towards understanding how to best leverage the cross-lingual knowledge inside PLMs for robust zero-shot reasoning in any language.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.