OriCon3D: Effective 3D Object Detection using Orientation and Confidence
Authors: Dhyey Manish Rajani, Surya Pratap Singh, Rahul Kashyap Swayampakula
Abstract: In this paper, we propose an advanced methodology for the detection of 3D objects and precise estimation of their spatial positions from a single image. Unlike conventional frameworks that rely solely on center-point and dimension predictions, our research leverages a deep convolutional neural network-based 3D object weighted orientation regression paradigm. These estimates are then seamlessly integrated with geometric constraints obtained from a 2D bounding box, resulting in derivation of a comprehensive 3D bounding box. Our novel network design encompasses two key outputs. The first output involves the estimation of 3D object orientation through the utilization of a discrete-continuous loss function. Simultaneously, the second output predicts objectivity-based confidence scores with minimal variance. Additionally, we also introduce enhancements to our methodology through the incorporation of lightweight residual feature extractors. By combining the derived estimates with the geometric constraints inherent in the 2D bounding box, our approach significantly improves the accuracy of 3D object pose determination, surpassing baseline methodologies. Our method is rigorously evaluated on the KITTI 3D object detection benchmark, demonstrating superior performance.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.